
AD-A267 369

ARMY RESEARCH LABORATORY f7

Boundary Integral Technique for
Explosion Bubble Collapse Analysis

Stephen A. Wilkerson

ARL-TR- 184 August 1993

DTICS ELECTE . *

AUG 0 4 1993

A

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION IS UNLIMED

93-1740693-174, 6 93 8 3 101
SI 

Rd



NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161. 0

The findings of this report are not to be construed as an official Department of the Army
position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute
indorsement of any commercial product.

L.S

*



I ii I il I iil
Form Approved

REPORT DOCUMENTATION PAGE OMB No 0A704oe 88

T-4 I'I aT s-- IIIZ c " '7ni d..S" J-7 'V3 '. 1, OW
Oan"g' ea 5. 2ý4 Ano 22022-302 -nd %I t-' 31-- P aaoe 5n:L3'~dt~' e... CC S S . V

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1993 Final, November 1987-January 1988
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Boundary Integral Technique for Explosion Bubble Collapse Analysis
RJ14W27

6. AUTHOR(S)

Stephen A. Wilkerson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

U.S. Army Research Laboratory
ATTN: AMSRL-WT-PD
Aberdeen Proving Ground, MD 21005-5066
Silver Spring, MD 20903-5000

9. SPONSORING, MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

U.S. Army Research Laboratory
ATTN: AMSRL-OP-CI-B (Tech Lib) ARL-TR-184
Aberdeen Proving Ground, MD 21005-5066

11. SUPPLEMENTARY NOTES

This work was performed under the auspices of the Naval Surface Warfare Center's long-term study program.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE *

Approved for public release; distL-bution is unlimited.

13. ABSTRACT (Maximum 200 words)

The dynamics of an underwater explosion bubble, including its collapse and interaction with a free or
hard surface, are analyzed using incompressible flow theory and a boundary integral formulation. The
formulation of the solution method and the crux of the numerical treatment are presented in detail. A
computer program for axisymmetrical problems has been successfully developed. Numerical results, including
bubble periods, maximum radii, and velocities of the reentrant jet tip, are compared to available experimental
data and to computational results obtained using the PISCES finite difference code.

14, SUBJECT TERMS 15. NUMBER OF PAGFS

boundary integral technique; bubble jetting; explosion bubble collapse; 46
PISCES code; explosion bubbles; cavitation; finite element analysis

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-0,-280 5500 S'tandad Form 298 (Rev 2-89)

P'•' ba n N 5011'/5

L.)



INTENTIONALLY LEFT BLANK.

I

ii1

Ask



FOREWORD

This work was sponsored under the auspices of the Naval Surface Warfare Center's long-term

study program. This program allows employees the opportunity of continued academic study for the

period of 1 year. The study was conducted during the summer and fall of 1987 under the

aforementioned program. The purpose of this study was to develop an analytical approach for the

prediction of underwater bubble collapse and its interaction with the free surface or a solid surface.

The report describes the solutions for axisymmetric problems. The approach is shown to be in good

agreement with available experimental data and other analytical approaches.

I S

* .................. I
-. *4

, C Q U L1' .. ....... ...... ..

DT"IC QU'A.•TY_ IN2FECTEND 3

iii



4"

INTENTIONALLY LEFT BLANK.

iv



ACKNOWLEDGMENT

The author gratefully acknowledges the advice, patience, and expertise of Dr. A. Prosperetti,

Department of Mechanics, The Johns Hopkins University, Baltimore, MD, who provided the technical 4

foundation of this work. The author would like to give recognition to Mr. K. Kiddy who provided the

PISCES analysis included in this work. The author also acknowledges the support of the U.S. Army

Ballistic Research Laboratory (BRL), Aberdeen Proving Ground, MD, in making the preparation of

this manuscript possible.

* S

I



4"

INTENTIONALLY LEFT BLANK.

* 0

vi



TABLE OF CONTENTS

Page

FOREW ORD ............. .................................... iii 4"

ACKNOWLEDGMENT .... .......................................... v

LIST OF FIGURES .... ............................................. vi

LIST OF TABLES ............................................... viii

1. INTRODUCTION ..... ............................................ ...

2. MATHEMATICAL FORMULATION .................................... 3

3. RESULTS .... .................................................... 10

4. SUM M ARY .... .................................................. 17

5. REFERENCES ..................................................... 37

DISTRIBUTION .... ............................................... 39

v i

vii



10
I

4

INTENTIONALLY LEFT BLANK.

* .

viii

S



16

LIST OF FIGURES i

Figure Pagee1
I

I. Flow-ndu-, Migration Near a Boundary .................................. 19

2. Boundary Conditions .... ............................................ 20

3. Bubble Partitioning .................................................. 21

4. Bubble Radius vs. Time Plot (0.66 lb TNT 300 ft)............I.................22

5. Bubble Radius vs. Time Plot (0.66 lb TNT 550 ft) ............................ 23

6. Bubble Radius vs. Time Plot (0.50 lb TNT 300 ft) ............................ 24

7. Bubble Radius vs. Time Plot (0.50 lb TNT 600 ft) ............................ 25

8. Bubble Radius vs. Time Plot (0.60 lb TNT 600 ft) ............................ 26

9. Bubble Radius vs. Time Plot (0.353 lb TNT 500 ft) ............................ 27

10. Depth vs. Period Data (300 lb TNT) ...................................... 28

11. Bubble Profiles (300 lb TNT at 18 m) .... ................................ 29

12. Bubble Profiles (300 ib TNT at 12 m) ................................. 30

13. Bubble Profiles (300 lb TNT at 9 m) .................................... 31

14. Bubble Profiles (300 lb TNT at 6 m) .... ................................ 32

15. PISCES Calculation for Peak Fluid Velocity
(1,200 lb TNT 400-ft Depth) .... .................................... 33

16. PISCES Calculation for Bubble Profile
(1.200 lb TNT 400-ft Depth) ... .................................... 34

17. Incompressible Flow Theory for Bubble
Profile (1,200 lb TNT 400-ft Depth) ................................... 35

18. Solid Boundary Calculation (300 lb TNT 12 m) .............................. 36

ix

p -



INTENTIONALLY LEFT BLANK.

t



LIST OF TABLES

Table Page

I. Bubble Exact vs. Calculated Variable Pressure (First-Order Time Integration) ...... 12

2. Bubble Exact vs. Calculated Variable Pressure (Second-Order Time Integration) .... 12

3. Bubble Exact vs. Calculated Constant Pressure (First-Order Time Integration) ...... 12

4. Bubble Exact vs. Calculated Constant Pressure (Second-Order Time Integration) .... 13

5. Bubble Period (Calculated vs. Experiment) .............................. 14

6. Bubble Period (Calculated vs. Experiment) .............................. 15

xi

6. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ --- BubeProrClultdv.E--mnt7................1



(716) 265-1600

INTENTIONALLY LEFT BLANK.

xii

IInE



1. INTRODUCTION

An underwater bubble can exhibit dynamic behavior similar to a mass spring system. For an

explosion bubble, the initially high internal pressure will drive the surrounding fluid outward at a

decreasing rate. Due to the fluid inertia, the bubble will overexpand, dropping its internal pressure to

only a small fraction of the surrounding fluid's hydrostatic pressure. Then the bubble will begin to

contract at an increasing rate. The contraction is propelled by the fluid's surrounding hydrostatic

pressure. This process will continue until the increasing bubble pressure abruptly reverses the process.

Thus, the elastic properties of the gas and water provide the conditions for an oscillating system. This

process is termed bubble pulsation.

During the contraction phase of the bubble pulsation, variations in the surrounding fluid pressure

can cause the bubble surface to contract at different rates. These pressure variations can occur due to

bubble migration, a nearby object, the natural gradient of pressure with depth in a fluid, and other

disturbances. These external pressure variations will cause a higher rate of inward fluid acceleration

near a portion of the bubble surface. The portions of the bubble surface near the higher fluid

acceleration will form a jet near the end of the contraction phase of the bubble pulsation. This jet can

vary greatly in size and momentum, depending on the factors leading to its formation. This 0

phenomenon is termed bubble jetting. The primary purpose of this study was the development of

analytical techniques that could be used to study bubble pulsation and bubble jetting.

Much of the interest in underwater bubble dynamics has focused on the behavior of cavitation

bubbles. Cavitation bubbles have applications affecting military strategy, propeller and turbine blade

damage, and underwater acoustics. Collapsing cavitation bubbles can generate tiny regions where

temperatures are in the thousands of degrees with tremendous pressures and fl d velocities. A

number of authors (Guerri, Lucca, and Prosperetti 1982; Lezzi and Prosperetti 1987; Prosperetti 1982a,

1982b, 1984. 1986, 1987; Prosperetti, Crum, and Commander 1988; Prosperetti and Jones 1984:

Prosperetti and Lezzi 1986; Chahine 1982, 1977; Chahine and Bovis 1983; Chahine and Genoux 1983;

Chahine, Genoux, and Liu 1984; Chahine and Sivian 1985; Genoux and Chahine 1984; Johnson et al.;

Taib 1985; Chapman and Plesset 1970, 1972) have demonstrated that, in some instances, bubble

behavior can be accurately predicted with good accuracy utilizing numerical methods.



The focus of this numeric stud), is the dynamic expansion and collapse of large bubbles, such as 0

those created by an underwater explosion in the free field, in the vicinity of a free surface, and near a

solid body. Bubble collapse is influenced by a number of physical factors. The factors include the

gradient of hydrostatic pressure as a function of depth, bubble migration, and a bubble's proximity to

nearby solid bodies.

The effect of the pressure gradient on jetting is far more influential for a large bubble than a

cavitation bubble. In the former case, the hydrostatic pressure at the bottom of the bubble surface can

be twice as high as the hydrostatic pressure at the top of the bubble. Contrarily, bubble migration

leads to bubble jetting in both large and small bubbles. In general, bubbles are driven upward by their

own buoyancy force. Consequently, the higher velocity of the flow at the head of the bubble leads to

a reduction in hydrostatic pressure, while the stagnant flow along the lower surface of the bubble leads

to an increase in the hydrostatic pressure. This phenomenon, accompanied by the dynamic collapse of

the bubble, will typically yield a bubble jet near the end of the bubble collapse phase. Further, the

proximity of the bubble to a solid boundary can also greatly influence the bubble jetting behavior

(Figure 1). When a bubble pulsates near a body, the fluid near the object must move faster than the

fluid around other portions of the bubble. The result is a decrease in the fluid's pressure near the

boundary. This pressure drop in the fluid near the body will generate bubble migration toward the 0
body. When the bubble comes in contact with the body during the expansion phase of its period, the

bubble can have a very high water velocity. This is in pan due to the dynamic nature of the bubble

growth. As the bubble expands, the internal pressure can drop to only a small fraction of the normal

hydrostatic pressure in the surrounding fluid field. The result is the jetting of the bubble's lower

surface into the body. Finally, the combination of the various effects influencing bubble collapse and

jetting can act in conjunction with one another to increase jetting or oppose one another to reduce

jetting. The present method described in this report allows the opportunity for these behaviors to be

studied separately or in combination with one another.

The present study utilizes an axisymmetric boundary integral formulation which has application for

a variety of geometric configurations. The method is computationally efficient due to its dependence

on only the boundaries' value for the velocity, the potential, and the potential's first derivative. This

approach avoids the necessity of solving Laplace's equation in the entire domain occupied by the
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liquid which would be computationally intensive. The resulting range in computation time can vary

from minutes for free field calculations, to less than one-half hour for computations involving free

surfaces or a boundary. The computational device serving as a basis for these comparisons is the

VAX 8800. To illustrate the performance and accuracy of the method, a number of comparisons were

made. These comparisons included: exact vs. predicted solutions for spherical bubbles; experimental

bubble radii and period comparisons; and bubble jet tip velocities vs. compressible flow theory

calculations using the hydrocode PISCES. In these cases, the method is shown to be in good

agreement with available data. Further, a number of calculations very near the free surface are

performed showing the idealized formation of the water spray dome. Using this free surface

calculation, the limitations of the methodology are discussed.

The growth and collapse of large bubbles, such as those created by underwater explosions near

nonaxisymmetric underwater structures, are also of interest. In this scenario, the combination of

gravity-induced collapse and collapse caused by migration and proximity to nearby structures can

result in extremely high velocities of the bubble reentry jet tip. Analysis of bubble-structure

interaction is generally three-dimensional in nature due to the effects of gravity and the orientation of

the structure. Solution of this problem is briefly discussed in Section 2.

2. MATHEMATICAL FORMULATION

In this mathematical formulation model, the flow induced by one or more bubbles is considered.

The fluid occupies a domain £i bounded by the bubble surfaces, Sb, solid boundaries. Sr, and a surface

at infinity, S_, (Figure 2). The fluid, contained in domain QI, is considered incompressible and

inviscid.

In the case of underwater explosive detonations, a chemical reaction converts the original material

into a gas at very high temperatures and pressures. The temperatures can be of order 3,000" C with

pressures of order 50,000 atm (Landau and Lifshitz 1959). The result of the initial detonation is a

compression or shock wave being emitted into the fluid field, followed by the dynamic expansion and

contraction of the gas bubble. After the release of the shock wave, which is an early time

phenomenon, the speed of the bubble surface remains an order of magnitude smaller than the speed of

sound in water. Therefore, imposing an incompressibility condition on the fluid is deemed valid for

this flow condition.

3



Using the bubble radius as a characteristic length in the expansion or contraction phase of the 0

bubble pulse, a Reynolds number can be calculated. The Reynolds number for an underwater

explosion is found to be high through most of the bubble growth and collapse. Recalling that the

Reynolds number is a ratio of inertial to viscous forces, it is clear that neglecting viscid terms in the

conservation of momentum equation detracts very little from the problem solution. Furthermere, under

the assumption that the flow is inviscid and irrotational flow, the velocity field can be found from the

gradient of a potential. In the case of a cavitation bubble, similar assumptions were shown to be valid

by Guerri, Lucca and Prosperetti (1982).

The mathematical problem described above can be stated in the following form. The divergence

of the velocity vector is zero for an incompressible fluid. This expression is found from the

conservation of mass equation and can be written as

V -_u =-0. (1)

For irrotational flow, the curl of the velocity vector is zero and can be written as

V x U = 0. (2)

This expression is also satisfied when the velocity u equals the gradient of a potential which is

u = VO. (3)

Combining Equations I and 3 yields Laplace's equation. Laplace's equation is satisfied in the domain

Q occupied by the fluid and can be written in terms of the potential as

v2 0 = 0. (4)

The boundary conditions necessary for the solution of Laplace's equation in the domain Q can be

stated as

dx - on S. (5)

4
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with

=V¢p - n =0 on Sb, (7)
(-7

where x is the distance to the boundary from a consistent point of reference.

The conservation of momentum, or Navier Stokes equation under the assumption of

incompressible fluid and irrotational flow, can be written in the form

Du -VP
= - +9 g,(8)

Dt p

where Du represents the total derivative, P the pressure, p the density, and g the gravity. Using the

identity:

Vu2

u - Vu = i -uxVxu (9)
- 2 - -

and the relations in Equations 2 and 3, the equation for conservation of momentum reduces to the

form given by Euler (Landau and Lifshitz 1959) as

[P _ . -PR 1 (10)

-2 p

with PR representing the pressure on the surface of the bubble and P_ the pressure at infinity. The

pressure P- can be determined by the choice of a reference point. For example, if the point of

reference at infinity is the free surface of the water, P_, = I atm and z is the depth of the bubble

segment. PR can be found from the adiabatic pressure balance equation given by Cole (1948) as

5



PR= 7.8 +0(11)

where W is the weight of the explosive in grams of TNT equivalent, V is the volume in centimeters

cubed, and the pressure, PR, is given in kilobars. The a term is added to account for the effects of

surface tension. For a cavitation bubble, a similar adiabatic expression can be used.

The formulation strategy for the time integration of the equation of motion is straightforward. If

the bubble surface Sb, internal pressure, and the value of the potential and its first derivative on the

bubble surface are known, Equations 7 and 10 can be solved while marching through time. In order

to solve for the potential's first derivative on the bubble surface, Laplace's equation (Equation 4) must

be solved. This can be accomplished using the boundary conditions given in Equations 5, 6, and 7

and using a boundary integral method. The starting point of this solution to Laplace's equation makes

use of Green's second identity which is

fV [I v2 _ f,[O (12)

with W being a function of choice. The V represents integration over the volume and S represents

integration over the surface. The most obvious choice for i is

1I

W -(13)

which is the solution of the Poisson's equation having the form

v2 -41 1(x-x) (14)

where x and x are the reference and current coordinates of the bubble surface (Figure 3). The choice

of Poisson's equation and the Dirac function are ideal because the remaining volume integral given on

the left-hand side of Equation 12 reduces to a constant along each bubble segment.

6



With the substitution of Equations 4, 13, and 14 into Equation 12, the formulation reduces to a

surface integral with the following form: a

2tO(x) = S n- WV0.n]dS. (15)

The factor of 1/2 in the left-hand side of the integration in Equation 15 arises from the fact that the

integration on the bubble boundary can only be carried out around half the point of reference which is

the portion in the domain Q.

Equation 15 applies to both three-dimensional developments and the present axisymmetric

formulation. The three-dimensional approach can be accomplished using first-order and second-order

quadrilateral or triangular finite element techniques. The resulting integration would proceed in much

the same way as in the axisymmetric case. However, the biggest difference in the three-dimensional

solution is in the computation times required to solve problems. The computation time for the three-

dimensional case would undoubtedly be an order of magnitude higher than the axisymmetric

formulation. Therefore, the present axisymmetric formulation affords some basic advantages in the

study of bubble jetting phenomena. The real drawback is the inability of the present method to tackle 0
more complex interactions of bubbles and various underwater objects such as cylindrical and spherical

bodies in nonaxisymmetric orientations.

The axisymmetric formulation begins by a suitable choice of coordinate systems. The choice of

the cylindrical coordinate system for this case will reduce the integration around the bubble surface to

an elliptic integral. Using cylindrical coordinates, we can write the following:

x = (rcosO, rsinO, ) (16)

for the reference coordinate system and

x = (R,O,Z) (17)

for our current coordinate system. Substitution of these cylindrical coordinates into

Equation 15 and the rearrangement of terms reduced the integration to the following form:

7
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1 f fr A2 d dr'- 0(x)+ i1 r do dF (18)2X Jr T--" forIx-l•

where dr represents the integral on a surface element (Figure 3) and 0 the angle around the bubble

circumference. The integral about dO can be reduced to an elliptic integral of the first kind with a fair

amount of algebraic manipulations. The elliptical integral introduces a logarithmic term which is

singular for the cases when the current coordinate and the reference coordinate coincide. The resulting

singularity in the integration is bounded and occurs due to the use of the Dirac delta function. An

accurate calculation of this singularity will result in a more stable and accurate bubble model. After

experimentation with various expansions, a Gaussian quadrature with weight log (ý) was found to give

the best results (Wilkerson 1987). The quadrature allowed the estimation of error within acceptable

limits. The final form of the integration can be written as

I Jr G(x,x)dFr =q() + 1o(X)fr H(xx)dr (19)

where G(x, x) and H(x, x) are functions of the reference and current coordinates and an elliptic 0

integral. Using a straight line approximation for the axisymmetric bubble boundary (Figure 3), the

gradient of the potential can be found using the following matrix expression by a Gaussian elimination

routine. The basic expression is

nI

F aij(j = bi i = 1,2,3...n (20)
j-I

where

aij f G(, xi) drj (21)

'I'
b= (x)+ ) fr H(x-., xi))drj (22)

J 2n

8



and

S= const (23)

4,

The solution for 41/an can now be applied to the conservation of momentum equation and

marched through time. The updating of line segments and the momentum equation given in Equation

7 is accomplished with a finite difference time integration scheme and linear interpolation between the

nodes. The first-order form of the finite difference formula is

+ ZL +{ [P- pPR1+ gz}At. (24)

2I

However, higher order formulations, depending on multiple values of the potential, are used after the

initial time step. A similar expression is used to update the geometry. These higher order

formulations do not increase computation time significantly. The majority of the computation time

needed in the calculation is spent doing the integrations in Equation 19 and assembling and solving the 0

matrix formulation given in Equation 20. Therefore, the contributing factors influencing computation

time are the number of segments and the number of time steps. The amount of line segments

determines the total number of integrations in a time step and also the size of the matrix (Equation 20)

that must be solved. For the free field cases, 32 line segments were found to be sufficient. However,

in the cases involving the free surface or a solid surface, 84 line segments were used. No attempt to

optimize the method was made in the present study. Contrarily, the effect of time step size was

investigated. In the free field cases, any time step less than 1/450th of the total bubble period was

found to cause problems at the beginning and at the end of the bubble period. This is probably due to

the relative speed of the individual line segments during these phases of the bubble oscillation period.

A formulation involving a variable-sized time step dependent on the highest speed of a segment would

probably result in greatly reduced computation times. For the present, the author's primary concern

was with the validation and accuracy of the methodology and with exploration of the limitations of

this formulation. Consequently, a 1/1,000th of the bubble total period was used in all cases examined.

The bubble period was estimated using standard empirical rules (Swift and Decius 1950) for

underwater explosive detonations.

9



3. RESULTS

The validation of this methodology was initiated by attempting to solve simplistic problems. The I

problems were gradually changed to include more complex phenomena such as bubble interactions 4A

with the free surface and solid bodies. The problems and limitations are discussed with possible

solutions extending the method. What follows is a discussion of various problem types, the limitations

of the current approach, and possible advantages in the present methodology.

The starting point of the validation was a comparison of the boundary integral method to the exact

solution for a spherically symmetric bubble model. The conservation of momentum equation given in

Equation 10 was modified to exclude gravity. With gravity removed and in the absence of other

bodies, the solution technique should duplicate the exact formulation for a spherically symmetric

model. The conservation of momentum equation under spherical symmetry and the conservation of

mass equation can be integrated to yield I

/•2k _[2- -
[ ]] { -[L] (25) 0

where R represents the current velocity of the bubble sirface; R the current radius; and PR' P0,, and p

(as given in Section 2) are the internal bubble pressure, reference pressure, and fluid density. The

subscript o represents the referenced values. Using the boundary integral method for R, Ro, and Po,

the estimated value for k was compared to the exact solution given by Equation 25. In both bubble

expansion and bubble contraction, the boundary integral method approached the exact solution, or the

limit of the methods accuracy. The accuracy of the method appeared to improve with time. This is

caused by the potential's initial condition being assumed zero. Therefore, the method requires a

number of steps to calculate a reasonable value for the potential. Furthermore, this assumption is

particularly good in the case of an underwater explosion where the internal pressure is large by

comparison to the external pressure. The result is that the early bubble motion is dominated by the

large pressure differential, thus allowing the method to retain good overall accuracy under the zero

initial potential assumption. This accuracy is shown for both a first-order finite difference integrator

and a second-order time integrator in Tables I and 2, respectively.

10



The convergence seen in Tables I and 2 occurs for two reasons. First, the assumption allowing

the potential to be zero initially will require a few time steps to achieve a reasonable level of

equilibrium. This error will decrease rapidly at first then gradually thereafter. The second reason for

continued convergence is the constant reduction in pressure difference as the bubble volume grows.

This reduction in pressure difference results in a decrease in the radial velocity of the bubble. Slower

velocities under a constant time step are attributed to increased convergence. To e;timate the effects

of bubble radial velocity on convergence, the method was used with a constant time step under

constant pressure. The constant pressure will result in a constantly increasing radial velocity. This

should allow an estimation of the error attributed in time step size vs. bubble radial velocity. The

results are summarized in Tables 3 and 4.

The results showed that, for a constant time step of .01 and velocities sufficiently low, the

convergence and accuracy were quite reasonable. However, if the bubble were allowed to iterate long

enough, or if the pressure differential was increased, the convergence reached a minimum and then

began to diverge in accordance with bubble radial velocity. By comparing Tables I and 2 to Tables 3

and 4, the error effects of a particular time step at a given velocity can be seen. In Tables I and 2. the

time step used was .001 for velocities of order 102, while Tables 3 and 4 have a time step of .01 for

speeds of order 100. As expected, Tables 3 and 4, which have a smaller velocity vs. time step ratio,

converge faster to a reasonable error. In as much as the solutions converged to reasonable values in

both cases, it indicated that the initial conditions resulted in a reasonable cumulative error. The issue

of time step size seems to be the most crucial aspect in keeping the cumulative error to a minimum.

This became particularly important for bubble jetting where the velocities were as high as 1,000 ft/s

for the bubble segments near the nose of the reentrant jet tip. These high velocities lead to numerical

instabilities which would stop the analysis. Therefore, the bubble maximum velocities were compared

to the bubble period so that a rule of thumb could be developed for the time step. It was found that a

time step of 1/1,000th of the bubble period would give reasonable results in all cases investigated. A

further analysis of the time step could lead to a variable step size dependent on only the maximum

speed of the fastest bubble segment. However, no attempt to find a suitable ratio of time step to

segment velocity has been made.

The second phase of the validation was to compare bubble periods and maximum bubble radius to

experimental results. Swift and Decius (1950) offered data for an abundant variety of explosive sizes

II
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4Table 1. Bubble Exact vs. Calculated Variable Pressure
(First-Order Time Integration)

Radial Velocity

Time Step Exact Calculated Error M

10 51.24 53.10 3.6

20 33.68 33.77 0.25

30 25.42 25.37 0.19

40 8.1 8.18 -

9

Table 2. Bubble Exact vs. Calculated Variable Pressure
(Second-Order Time Integration)

Radial VelocityTime Step Exact I Calculated rror (%)

10 58.04 56.67 2.4

20 34.93 34.94 0.02

30 25.97 25.97 -

Table 3. Bubble Exact vs. Calculated Constant Pressure
(Firs,-Order Time Integration)

Radial Velocity

Time Step Exact_] Calculated Error (%)

10 0.09091 0.09036 0.60

20 0.1944 0.1943 0.046

30 0.3067 0.3066 0.012

12
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Table 4. Bubble Exact vs. Calculated Constant Pressure
(Second-Order Time Integration)

1t
Radial Velocity

Time Step Exact Calculated Error (%)

10 0.0999 0.1004 0.48

20 0.2048 0.2047 0.06

30 0.3177 0.3177 -

and depths to be attempted. A number of the shots presented in the Swift report were selected at

random and compared to the solution technique presented in this report. The results are presented in

Tables 5 and 6. The results generated in Table 5 are of greater importance because the methods used

to record bubble period are more accurate than maximum bubble radius data. The accuracy stems

from the use of piezoelectric gauges which can record the pressure waves emitted initially and with

each successive bubble pulse. The initial shock wave indicated the beginning of the period and the

first bubble pulse, which occurs just after bubble minimum, indicates the end of the period. Due to

the high speed of sound in water, the method gives very accurate results. For the data compared in I

Table 5, the analytical method gives reasonable results.

On the contrary, the maximum bubble radii data for the Swift report was not as accurate. These

data were obtained from measurements taken from simultaneous photographic records. As Swift and

Decius (1950) pointed out, the relative narrow angle of view from the high-speed cameras and the

problems with distortion and lighting made it difficult to make bubble radii measurements better than

2-4%. Further, depth measurements were obtained from a weighted line which could vary slightly

due to ocean currents. These factors are attributed to a loss of accuracy in the bubble radii

comparisons shown in Table 6.

The accuracy of the method was summarized by making a number of radius vs. time plots in

comparing computational values to those found in the Swift and Decius (1950) report. These plots are

given in Figures 4-9. The plots follow the growth and decay profiles of the bubble first period quite

well. These plots represent results generated by tests involving a number of charge weights at varying

depths.
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Table 5. Bubble Period (Calculated vs. Experiment)

Shot Charge Charge

No. Weight Dept Period Calculated Error

(lb) (ft) (ms) (ms) (%)

GIF 0.651 343. 27.40 26.40 1.9

G2F 0.660 304. 29.80 29.76 0.13

G5F 0.662 305. 29.89 29.70 0.64

G6F 0.658 304. 29.92 29.73 0.64

G7F 0.669 298. 30.23 30.39 0.50

G8F 0.663 304. 29.82 29.80 0.0

G9F 0.651 304. 29.64 29.62 0.0

G17F 0.660 305. 29.62 29.68 0.20

G18F 0.660 302. 29.61 29.92 1.0 I 0

G20F 0.660 538. 19.64 18.90 3.7

G21F 0.651 539. 19.10 17.50 9.0

G23F 0.658 567. 18.14 18.30 0.88

G7OF 0.660 503. 19.90 20.00 10.50

G71F 0.658 463. 21.00 21.40 1.90

G72F 0.660 586. 17.85 17.80 0.30

G73F 0.655 576. 18.16 18.00 0.90

G74F 0.660 556. 18.10 18.60 2.80

G76F 0.660 587. 17.10 17.38 0.30

AVERAGE 1.0%
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Table 6. Bubble Period (Calculated vs. Experiment)

Shot Charge Charge
No. Weight Dept Period Calculated Error

(lb) (ft) (ms) (ms) (%)

GIF 0.651 343. - 17.0 -

G2F 0.660 304. 18.80 18.49 1.68

G5F 0.662 305. 18.80 18.48 1.70

G6F 0.658 304. 18.80 18.47 1.80

G7F 0.669 298. 18.90 18.70 1.0

G8F 0.663 304. 18.90 18.52 2.1

G9F 0.651 304. 18.70 18.40 1.6

G17F 0.660 305. 19.40 18.46 5.1

GI8F 0.660 302. 19.40 18.53 4.7

G20F 0.660 538. 15.90 15.00 6.0

G21F 0.651 539. 15.70 14.40 9.0

G23F 0.658 567. 15.61 14.70 6.3

G70F 0.660 503. - 15.35 -

G71F 0.658 463. 16.60 15.80 4.9

G72F 0.660 586. 15.40 14.50 6.0

G73F 0.655 576. 15.60 14.60 7.0

G74F 0.660 556. 15.70 14.80 6.0

G76F 0.660 587. 15.10 14.50 3.9

AVERAGE 4.0%
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The deviations of values obtained from theory found in these figures is approximately of the same

magnitude as the errors given in Tables 5 and 6. For deeper shots, a larger error occurs with the

radius calculations. This is believed to be caused by a number of factors. As pointed out earlier, the

experimental data is not as accurate for radius calculations as it is for the bubble period. Further, the

initial conditions seem to play an important role in maximum bubble radius calculations. When the

initial radius was decreased, the radius estimates improved. This is due to the increase in hydrostatic

pressure at increased depths and the effect it plays on the overall pressure difference. Additionally, the

effects of bubble radius calculations are less forgiving for smaller charges than for larger ones.

However, in the interest of consistency, all results calculated in this report represent the same initial

conditions for internal bubble pressure and the potential on the surface.

All of the data compared thus far represents relatively small charges. Therefore, bubble periods

for a 300-lb charge detonated at shallow depths are compared to results presented in Cole (1948).

Figure 10 compares the observed periods in Cole vs. those predicted by theory. These calculations

include the effects of a free surface in the flow field. For the shallower depths, Figures 11-14 show

the growth and collapse of the bubble surface and the effects of the free surface.

When the bubble is closer to the free surface, the effects of the free surface become more evident. 0

This can be seen in Figures 11-13 in terms of bubble migration. The migration is retarded due to its

close proximity to the free surface. Figure 14 represents a fictitious scenario. The bubble, in this

case, would have undoubtedly broken through the free surface, venting its high-pressure gases. It was

not surprising that the calculation for this case became unstable and inadvertently terminated.

Therefore, understanding the limitations of the method are important in interpreting the validity of the

results. For a bubble at deeper depths, the bubble behavior becomes less influenced by the free

surface. At depths greater than 100 ft for the 300-lb explosive, the bubble profile becomes

indistinguishable from the free field profile for a similar calculation.

To estimate the accuracy of the method for predicting reentrant water jet tip velocities, a

calculation was compared with a PISCES code calculation. The PISCES code has been used for a

number of calculations with regard to underwater explosion bubbles, and it is considered reasonably

accurate. The comparison for peak reentrant jet velocities was made between the present method and

PISCES. If the boundary integral method presented were valid, the two methods should present

similar results. As it turned out, the exact time and location of the peak jet velocities varied slightly
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the two methods. For the PISCES calculation, the peak velocity occurred just behind the bubble

surface and was found to be 1,148 ftjs. A line estimating the location of the bubble surface, with

regard to peak velocity, is shown in Figure 15. Since an Euler method has been used in the PISCES

calculation, the interface between different materials is not defined exactly. However, an estimated 4

profile is shown in Figure 16. For the incompressible flow calculation, the maximums and minimums

for the potential must occur on the boundary to satisfy the uniqueness of Laplace's equation. The

highest velocity recorded in the calculation occurred just as the bubble's lower surface broke through

the bubble's upper surface (Figure 17). A dotted line estimating the intersection of the two results is

shown in Figure 15. The results indicate a reasonable correlation between the two methods.

However, a more accurate estimation of the error can only be made through direct comparison with

experimental results which are presently unavailable.

A final calculation was performed for an explosion bubble near a solid boundary. The results

showing the collapse and upward migration toward the solid boundary are summarized in Figure 18.

For this calculation, a 300-lb charge of TNT was detonated 12 m below the solid surface at a depth of

12 m. It is interesting to note the similarities and differences between the free surface calculation of

the same weight and depth (Figure 12) and this case. The expansion and overall period of the bubble

growth are not disproportionately in disagreement. However, as expected, the solid boundary increases 0
migration toward the boundary while having little effect on the formation of a bubble jet. On the

other hand, the free surface condition led to decreased migration and a retardation of bubble jet

formation. In general, the free surface condition can lead to bubble blow-out (where the bubble vents

through the free surface), bubble downward migration at certain distances from the free surface, and

the retardation of bubble jetting. Therefore, it is clear that a nearby structure or solid boundary can

lead to bubble jetting into the structure even when near the free surface.

4. SUMMARY

The boundary integral method can be used for the prediction of bubble behavior in a variety of

scenarios. While the present study offers only limited results, the method shows promise for future,

more in-depth studies. The method shows good agreement with other analytical prediction techniques

as well as a variety of experimental data. This report offers the only example of such comparisons

found in the literature. The program developed also offers a number of improvements which include

efficient programming (under 350 lines of code) and an accurate method for the calculation of the

17
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singularity in the problem. This approach allows the analytical study of bubble pulsation and jetting

behavior in coordination with experimentation. Future studies of this nature should include the three-

dimensional aspects of bubble collapse, thus bringing the method to its full potential. I

In summary, the methodology presented was simple to use, computationally efficient, and

reasonably accurate. The overall cost and reliability of the method may prove a valuable aid in

guiding and analyzing experimental work.
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